

5.4 Use Medians and Altitudes

Before You used perpendicular bisectors and angle bisectors of triangles

You will use medians and altitudes of triangles.

So you can find the balancing point of a triangle, as in Ex. 37.

Balancing Point of a Triangle - The intersection of the

Medians

Median of a Triangle - A segment from a <u>Vertex</u> to the midpoint of the <u>provide</u> side.

The three medians of the triangle are Concurren

The Point of _Concur

Three medians meet at the centroid.

THEOREM

For Your Notebook

THEOREM 5.8 Concurrency of Medians of a Triangle

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle ABC$ meet at P and

$$AP = \frac{2}{3}AE$$
, $BP = \frac{2}{3}BF$, and $CP = \frac{2}{3}CD$.

EXAMPLE 1: Use the CENTROID of a triangle

In ΔRST . Q is the centroid and SQ = 8.

Find QW and SW.

There are three paths through a triangular park. Each path goes from the midpoint of one edge to the opposite corner. The paths meet at point P.

1. If SC = 2100 ft, find PS and PC.

Ps: 32100 = Ps 700 = Ps

2. If BT = 1000 ft, find TC and BC.

3. If PT = 800 ft, find PA and TA.

Altitude of a Triangle - The _____

segment from a vertex to the

opposite side or to the line that contains the opposite side.

THEOREM

For Your Notebook

THEOREM 5.9 Concurrency of Altitudes of a Triangle

The lines containing the altitudes of a triangle are concurrent.

The lines containing \overline{AF} , \overline{BE} , and \overline{CD} meet at G.

